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Better Pasting via Quasi-Interpolation

Blair Conrad and Stephen Mann

Abstract. Surface pasting is a hierarchical modeling technique that
places feature surface atop base surface with approximate continuity. In
this paper, we describe the use of quasi-interpolation to set the bound-
ary control points of the pasted feature. To achieve interactive perfor-
mance for surface pasting, we modify the coefficients and weights of quasi-
interpolation and devise an efficient sampling scheme. The new sur-
face pasting technique is actually faster than the original surface pasting
method when using the same number of feature control points, with a
much lower discontinuity between the feature and base surface.

§1. Introduction

Spline curves and surfaces are used in many areas of computer graphics and
computer aided geometric design. In particular, tensor product B-spline sur-
faces are commonly used in modeling and computer animation because they
have many attractive properties, such as a compact representation and ad-
justable levels of internal continuity [7].

Frequently, the user of a piece of modeling or animation software will
want to add a region of local detail to a B-spline tensor product surface,
but the knot structure will be too coarse to allow the fine-grained control
that the user desires. Traditional methods of increasing the complexity of
the surface include inserting knots using either Boehm’s algorithm [3] or the
Oslo algorithm [6]. The insertion of a knot into either of a surface’s knot
vectors causes an entire row or column of subpatches to be split — rather
than increasing the number of subpatches locally, extra subpatches are created
across the width or breadth of the surface.

Forsey and Bartels [8] developed hierarchical B-splines to allow the user
to add local detail to a tensor product B-spline surface while maintaining B-
spline continuity. Hierarchical B-splines suffer from several drawbacks: the
regions of added detail must remain parametrically aligned with the base,
and it is impractical to slide the features or to maintain a library of overlays
that may be added to a base surface. Wavelets [10] can be used in a similar
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hierarchical modeling technique, but they also require the detail regions to be
parametrically aligned with the base.

Displacement mapping is another technique for adding local detail to a
surface while adding as few extra control points as possible. Every point on
the feature is defined by a displacement vector relative to a certain point in
a reference plane. To evaluate the surface at the detail, you add the displace-
ment vector of the feature to the corresponding point on the base surface.
The greatest disadvantage to using displacement mapped surfaces is the com-
putational cost. Multiple surface evaluations must be used to determine each
point to be rendered on the composite surface.

Surface pasting, suggested by Forsey and Bartels [2], is a generalization of
hierarchical B-splines that was intended to combine the flexibility of displace-
ment mapped surfaces with the speed of evaluation enjoyed by hierarchical
B-splines. This technique has the flexibility of displacement mapping, but it
is much cheaper since only the control points of the feature must be mapped,
rather than the larger number of surface points to be rendered. This combina-
tion of flexibility and speed has drawn the attention of the modeling industry
to surface pasting — recent versions of Houdini, a commercial animation tool
produced by Side Effects Software, have included support for surface pasting.

However, surface pasting is only an approximation, and as such it does
not have the same continuity properties as displacement mapping or hierar-
chical B-splines. In general, there is no guaranteed continuity between the
feature and the base surfaces. By inserting knots into the feature surface,
the error between the feature boundary and the base surface can be reduced
to any desired tolerance, but many knot insertions may be required to get
the desired approximation, and the resulting additional control points in the
feature dramatically increase the cost of the pasting operation.

In this paper, we suggest altering the surface pasting technique to improve
the approximate continuity between the feature and base surfaces by using
quasi-interpolation to set one or more of the outer rings of feature control
points.

§2. Surface Pasting

Since the work in this paper is an extension of surface pasting, we will give a
quick review of how pasting works. For details on standard surface pasting,
see any of the earlier works on the subject [1,2].

The pasting process is illustrated in Figure 1. Surface pasting combines a
base surface and a feature surface, each of which is in tensor-product B-spline
form. The feature’s control points are adjusted so that the boundary of the
pasted feature lies on or near the base surface, and the shape of the pasted
feature reflects the original shape of the feature imposed as a displacement of
the base surface.

To map the feature’s control points, the feature’s domain is embedded in
the feature’s range (upper left of Figure 1). Next, a local coordinate frame
Fij = {ui,j,vij,wi;,O;;} is constructed for each feature control point P; ;
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Base Surface Composite Surface
Fig. 1. Surface Pasting.

where the origin O;; of each frame is the Greville point corresponding to
P; ;, two of the frame’s basis vectors are the parametric domain directions
and the third basis vector is the direction perpendicular to the domain. Each
control point P;; is then expressed relative to its local coordinate frame F; ;
as P, ; = owi; + Pvi; +ywij + Oy ;.

Next, we associate the feature’s domain with a region in the base’s domain
(right half of Figure 1). This gives the location on the base surface where we
will place the feature. We now map each coordinate frame F; ; onto the base
surface, giving a new coordinate frame Fj; = {uj;,v;;,w];, 0" ;} whose
origin ('; ; is the evaluation of the base surface at ); ;, and two of its basis
vectors lie in the tangent plane of the base surface at that point, the third
being perpendicular to the tangent plane. We then use the coordinates of
each feature control point P; ; relative to F; ; as coordinates of the elements
of the frame 7] ,. This gives us the location of the pasted feature control

: ' ¥ ’ ’ ',
point, P ; = au; ; + Bv; ; +yw; ; + O'i;.

§3. Feature Boundaries

With standard surface pasting, the boundary control points of the pasted fea-
ture surface (Figure 2) are conventionally placed on the base surface, resulting
in an almost C° join. Likewise, the second layer of feature control points are
also conventionally located on the base surface, giving an almost C! join. By
inserting knots into the feature surface, the discontinuity between the feature
and the base can be made as small as desired.

One disadvantage of using knot insertion to decrease the discontinuity
between the feature surface and the base surface is that it greatly increases the
number of control points in the feature surface. In addition to increasing the
storage requirements of the feature surface, this increases the computational
cost for interactive modeling, as each feature control point needs to be mapped
with the pasting process described in the previous section.

The goal of this work is to find better settings of the boundary layers of the
feature control points to minimize the C® and C? discontinuities. Thus, we will
find better settings of the control points illustrated in Figure 2. In this figure,
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Fig. 2. Approximate c° boundary points and ct boundary points.

the circled points are set using quasi-interpolation: the black control points
will be set to interpolate position and derivative information sampled from
the base surface; the gray control points will be set using quasi-interpolation;
and the remaining control points will be set using the standard surface pasting
process.

§4. Quasi-Interpolation

Quasi-interpolation is a spline approximation technique developed by de Boor
and Fix [4]. Their method, given a function f defined over a region of R
and a partition 7 of R, constructs a degree m spline, F; f, that approximates
f. Fif is called the quasi-interpolant of f. The quasi-interpolant is a local
approximation in that its value at u depends only on the values of f in a small
neighborhood around wu, it reproduces polynomials of degree m or less, and it
provides a high order approximation to f, with |Ff — f| being O(|x|™*1).

Lyche and Schumaker [9] describe a family of quasi-interpolation opera-
tors @ which include the one of de Boor and Fix. They take

M
Qf =Y \fBP, 1)
i=0

where the {B™}M are the B-splines and {\;}}, are linear functionals. The
linear functionals can be chosen so that @ is applicable to a wide class of
functions, Q is local, and @ f approximates smooth functions with a high order
of accuracy. Then the operator @ can be applied to a real-valued function f
to produce a B-spline curve @} f that approximates f.

The quasi-interpolant @@ f approximates a smooth function f with a high
order of accuracy because Q) is constructed specifically to reproduce polynomi-
als. The Lyche-Schumaker quasi-interpolants approximate smooth functions
with accuracy of up to O(R™*+1) for a function with a sufficiently high degree
of continuity. In addition, quasi-interpolants can be constructed using linear
functionals that can be quickly evaluated, resulting in a fast approximation op-
erator. The combination of high accuracy and speed make quasi-interpolation
a fitting tool to improve the approximate continuity around the boundary of
pasted features.
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The quasi-interpolant @ f is in B-spline form. Each control point of @ f
is a weighted sum of linear functionals applied to f:

m
Pi=) aijhif-
—

One particular choice of the Lyche-Schumaker quasi-interpolants corresponds
to

Xijf =70, Ti1s o Tijlf

where the 7’s are locations at which to evaluate f, and a; ; is the blossom [11]
of

pii(u) = (u = 7ip)(v —7,1) -+ (v = 75-1)

evaluated at w;, ..., Uj4+m—1, where the u; are the knots of @ f. This results in
a quasi-interpolant where Qf = f when f is a degree m or lower polynomial
and if @f # f, then the error has the best possible order.

§5. Modified Quasi-interpolant

The Lyche-Schumaker quasi-interpolant uses cheap coeflicients and expensive
linear functionals. For interactive modeling using surface pasting, the linear
functionals are recalculated frequently (i.e., when we slide the feature across
the base) and the coefficients are recalculated less frequently (only when we
perform knot insertion to reduce the C° discontinuity). Thus, to match the
quasi-interpolant to our application, we made new, cheaper linear functionals,

Xiif = f(7i5)-

This choice of A; ; results in more expensive ¢; ;, which are now the blossom

of
U — Tik
pij(u) = H ﬁ‘“ (2)
ki i, i,k

evaluated at u;, ..., Ui4m—1, Wwhere the u; are the knots of @f. Note that the
Lyche-Schumaker linear functionals require computing a divided difference of
the samples while ours do not, but the denominator term of (2) makes our o
coefficients more expensive than theirs.

To use the quasi-interpolant on all four boundaries of a feature, the ends
of the connecting boundary curves must match. This is most easily achieved
by modifying @ to reproduce position and (to use the quasi-interpolant on the
cross-boundary derivatives) d derivatives at its endpoints.

Thus, we devised a quasi-interpolant that we call Q¢, where the linear
functionals for the control points near the ends of the curves are derivatives of
the original curve at the endpoints. This quasi-interpolant is actually a spe-
cial case of the Lyche-Schumaker quasi-interpolant. The Q¢ quasi-interpolant
requires different A’s and p’s at the endpoints, which in turn require new «’s.
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For 0 < i< M, and 0 < j < m, we define Q¢ as

M M m
Q'f =) PBI= > (Zai,j)‘i,jf) B, )
=0 =0 j=0

where
f(mi5), fd<i<M-—d

DI f(upm—1),ifi <dand j <3

Nif={".
i Dif(upy), ifi>M-—dandj<M—i
0, otherwise
(T2, i d<icM—d
k#Ti,j — Ti,k
_ J
pij(u) = ﬁ"—%":—l)— if i<d and j<i
- J
(—“—j"‘—’”)-, if i>M—d andj <M —i
\ .
0, if i<d and j>1
aij =40, if i>M—d and j> M —i

Pij (ui’ vy Uirm—1), Otherwise

where the 7; ;5 are as defined in the next section. Note that for d < i <
M — d, the p; ;s are merely Lagrange polynomials. This quasi-interpolant Q¢
interpolates the position and derivatives at the endpoints and has optimal
error bounds as discussed by Conrad [5].

Sampling discipline

The above equations require us to sample the function f to be approximated
at some values 7; ;, and (3) suggests that we require about m + 1 samples
of the base surface for each boundary control point of the feature. Since the
quasi-interpolant error bounds hold for most choices of 7’s, we managed to
reduce the number of samples of the base surface by selecting the 7; ; in the
following way:

o Place the first d and last d control points in groups of their own; divide
the remaining control points into groups as indicated by the pseudo-code
of Figure 3; each group k will contain control points Py, ..., PN, 4nx—1,
where Nj = EL—(} ng and ng is the number of control points in group k;

e Let v; be the Greville point associated with control point P;; then for
each group k, choose the interval from which to sample as

[ak’ bk] = [(7Nk-'1 + 7Nk)/2) (7Nk+1'—1 + 7Nk+1)/2];

o Set 7 ; = ax + j(bx —ax)/m, for i = Ni,..,Nyyy —land j =0,...,m;

e Sample f at the 7; j; note that you can share the first and last samples
between groups,
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I:=M-2xd+1
numFullGroups := |I/m)|
L :=I — m*numFullGroups
ifL=0
make numFullGroups groups of m
else if numFullGroups =0 (mod 2)
put leftovers in middle group; all others have m
else there are an odd number of full groups
ifL=0 (mod2)
first and last groups contain L/2 each; all others
else
move one control vertex from middle full group to the leftovers
the first and last groups each contain (L + 1)/2,
the middle group contains m — 1, and the others contain m

Fig. 3. Pseudo-code for grouping.

i i [ i 1 ) [} i 11

Fig. 4. Sampling discipline for quasi-interpolated surface pasting.

Pseudo-code for our grouping scheme appears in Figure 3, and the sampling
is illustrated in Figure 4. The white and gray points are samples of the base
surface; the black points represent the control points for the quasi-interpolant
(the actual quasi-interpolant control points will lie much closer to the curve;
we have moved them away from their actual position for illustrative purposes);
the dotted lines indicate the boundaries between the groups, with the gray
points being shared by two groups; and the triangles indicate the position of
the Greville points.

This sampling method reduces the number of base surface evaluations to
about one sample per control point.

Quasi-interpolated surface pasting

Ideally, we would be able to integrate quasi-interpolation into surface pasting
by running four independent quasi-interpolations to set the boundary control
points, then four more independent quasi-interpolations to set the second layer
of control points, and so on. However, as seen in Figure 2, the boundary layers
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of control points overlap, and while the gray control points in this figure can
be set independently, the black ones are shared by two boundaries. To build
a tensor-product patch, we need the two quasi-interpolation solutions that
compute a group of black points to give these points the same settings.

Our solution is to sample the base surface at the corners of the embed-
ded feature domain for position and as many derivatives as we are trying to
approximate along the boundary. In our implementation, we were only trying
to achieve approximate C! continuity, so we sampled for position and first
derivatives (including mixed partial derivatives).

Next, we used the Q¢ operator to set d + 1 outermost rings of control
points. With d = 1 (the right side of Figure 2), this means that we make eight
applications of the Q! operator, four for the outer layer of control points,
and four for the next layer of control points. In each application, the Q!
operator interpolates four values (those indicated by the black points) and
quasi-interpolates the remaining values.

Note that while we quasi-interpolate points to compute the first layer of
control points, to compute the second layer of control points, we first quasi-
interpolate cross-boundary derivative vectors. The vector coefficients of this
second quasi-interpolant are then scaled and added to the first layer control
points to produce the second layer of control points.

We set the remaining interior control points, which do not affect the
cross-boundary derivatives, using the standard pasting method.

Results

We integrated the Q® and Q! quasi-interpolants into surface pasting. In our
particular implementation, this results in a cubic quasi-interpolant being used
to approximate a C? curve. Theoretically, the quasi-interpolant described in
this paper should have O(h3) order of accuracy, which matched our empirical
tests. This is an improvement over standard pasting, which empirically had
O(h?) accuracy on the same data.

We achieved a similar improvement for the cross-boundary derivatives
(improving from O(h') to O(k?)), and the Q' method has an additional ad-
vantage over standard pasting: for standard pasting, you insert knots in one
parametric direction to decrease the C° discontinuity, and insert knots in the
other parametric direction to decrease the C! discontinuity. With the Q!
method, inserting knots in one parametric direction will decrease both the C°
and C! discontinuity along the boundary.

Visually, the quasi-interpolation surface pasting method gives significant
improvements in the approximate C?¢ continuity around the feature bound-
aries. An example appears in Figure 5. In all three images, the feature
surface has the same number of control points. The large gap that appears in
the standard surface pasting example has almost disappeared with the Q° and
Q* pasted surfaces, but a “corner” has appeared in the Q° surface. However,
Q' pasted surfaces have better approximate continuity (both C° and C') and
are cheaper to paste than standard pasting, assuming we use feature surfaces
having the same number of control points for both standard and Q! pasting.
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Fig. 5. Standard pasted feature, Q° pasting, and Q! pasting.

This computational gain for Q' pasting is a result of quasi-interpolating
the cross-boundary vector field when computing the second layer of control
points. We obtain the vectors to quasi-interpolate when we evaluate the base
surface for quasi-interpolating the boundary curve. Thus, we avoid having to
evaluate the base surface when computing the second layer of control points.

The biggest computational gain, however, comes from needing fewer con-
trol points for Q! feature surfaces than for standard pasting surfaces to achieve
the same tolerance along the boundaries. In particular, in the examples we
tested, the Q' method required one third the number of boundary points
as the standard surface pasting method to achieve the same error along the
boundary. This results in one-ninth the total number of control points in the
feature, resulting in roughly a factor of ten speedup for quasi-interpolated
surface pasting over standard surface pasting.

Conclusion

Surface pasting is a flexible modeling technique that allows the creation of
multi-resolution surfaces by hierarchically composing tensor product B-spline
surfaces. The resulting composite surface is only approximately C® and ap-
proximately C!. In this paper, we developed quasi-interpolation operators to
reduce the C° and C' discontinuities between the feature and base surfaces.
By reducing the C° and C? discontinuities, we can use fewer control points in
the representation of the feature surfaces, resulting in a significant speedup of
the pasting technique.

We implemented the technique described in this paper for pasted surfaces
of arbitrary degree, and tested the method on cubic and quartic surfaces.
While we have only reduced C° and C! errors, the extension to higher levels
of approximate continuity is straightforward, but calculating the coefficients
that weight the linear functionals will be more complicated.
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